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Abstract
Lie group symmetries are well known to play a role in the physics of
quantum systems. The representation theory of Lie groups can be
conveniently expressed in the framework of category theory. Cate-
gory theory also extends to incorparate particle statistics, which in
turn allows for an investigation of exclusion and confinement principles
through the action of the symmetric groups. We go on to investigate
the hermitian structure over a symmetric premonoidal category of rep-
resentations over a Lie group. We will examine this general approach
in terms of categorical traces and hermitian forms.

1 Braided Pre-monoidal Categories
Pre-monoidal categories are used within the Racah-Wigner calculus to reformulate
the physical context and interpretation of Feynman diagrams [5]. This work lead to
the development of examining the boson-fermion statistic for su(3) colour [6]. The
only possible construction is to form a strictly pre-monoidal category which deforms
the pentagon condition. We shall begin this section by defining a pre-monoidal cat-
egory, taken from [3].

Definition 1. A pre-monoidal category is a triple (C,⊗,A) where C is the class of ob-
jects, ⊗ is the bifunctor ⊗ : C ⊗ C → C and A is the natural associator isomorphism
such that A : ⊗(id×⊗) → ⊗(⊗× id).

We define the associator A, as being the natural associator. However in practice
we use aU,V,W as a member of A for all objects U, V,W ∈ C. Therefore aU,V,W is the
same morphism which we have described previously. We should note however that
there are no conditions imposed on A, but it is important that we should define the
natural isomorphism Q : ⊗(⊗×⊗) → ⊗(⊗×⊗) via the following diagram:

(U ⊗ V )⊗ (W ⊗ Z)

a(U⊗V ),W,Z

��

(U ⊗ V )⊗ (W ⊗ Z)
qU,V,W,Zoo

((U ⊗ V )⊗W )⊗ Z U ⊗ (V ⊗ (W ⊗ Z))

aU,V,(W⊗Z)

OO

id⊗aV,W,Z

��

(U ⊗ (V ⊗W ))⊗ Z

aU,V,W⊗id

OO

U ⊗ ((V ⊗W )⊗ Z)aU,(V⊗W ),Z
oo

This box diagram expresses Q in terms of the component isomorphism which are
defined by [3] as:

Q((U ⊗ V )⊗ (W ⊗ Z)) = qU,V,W,Z((U ⊗ V )⊗ (W ⊗ Z)) (1)

which may be rewritten as,

qU,V,W,Z = a−1
(U⊗V ),W,Z(aU,V,W ⊗ id)aU,(V⊗W ),Z(id⊗ aV,W,Z)a−1

U,V,(W⊗Z). (2)

This deformed pentagon condition is simply a more generalised form which we used
in describing monoidal categories. We must examine the significance of Q and its
use in distinguishing the coupling of the objects of the category through the brackets
[], {}. This notation is shown by [3],

Q([U ⊗ V ]⊗ {W ⊗ Z}) = ({U ⊗ V } ⊗ [W ⊗ Z]) (3)

as being the functor Q which provides the temporal coupling of U and V before
coupling W and Z as being distinguishable from the reverse coupling.

We can describe pre-monoidal categories as being unital if they have an identity
object 1 ∈ C and natural isomorphisms ρU : U ⊗ 1 → U and λU : 1⊗ U → U .

The next important class of unital pre-monoidal categories is when the tensor prod-
uct is commutative up to isomorphism. Ths leads to the concept of a braided unital
pre-monoidal category.

Definition 2. A unital pre-monoidal category C is said to be braided if it is equipped
with a natural commutativity isomorphism σU,V : U ⊗ V → V ⊗ U for all objects
U, V ∈ C such that the following diagrams commute:

(i)
U ⊗ (V ⊗W )

σU,(V⊗W )
// (V ⊗W )⊗ U

a−1
V,W,U

**TTTTTTTTTTTTTTT

(U ⊗ V )⊗W

a−1
U,V,W

44jjjjjjjjjjjjjjj

σU,V⊗id **TTTTTTTTTTTTTTT
V ⊗ (W ⊗ U)

(V ⊗ U)⊗W
a−1
V,U,W

// V ⊗ (U ⊗W )
id⊗σU,W

44jjjjjjjjjjjjjjj

(ii)
(U ⊗ V )⊗W

σ(U⊗V ),W
// W ⊗ (U ⊗ V )

aW,U,V

**TTTTTTTTTTTTTTT

U ⊗ (V ⊗W )

aU,V,W
44jjjjjjjjjjjjjjj

id⊗σV,W **TTTTTTTTTTTTTTT
(W ⊗ U)⊗ V

U ⊗ (W ⊗ V ) aU,W,V
// (U ⊗W )⊗ V

σU,W⊗id

44jjjjjjjjjjjjjjj

(iii)
(U ⊗ V )⊗ (W ⊗ Z)
σ(U⊗V ),(W⊗Z)

��

qU,V,W,Z // (U ⊗ V )⊗ (W ⊗ Z)
σ(U⊗V ),(W⊗Z)

��

(W ⊗ Z)⊗ (U ⊗ V ) (W ⊗ Z)⊗ (U ⊗ V )
qW,Z,U,Voo

We should also make clear to the reader that a unital, pre-monoidal category for
which

Q = id⊗ id⊗ id⊗ id (4)

is a monoidal category. Furthemore we must consider the principle of rigidity. Rigid-
ity is related to the inclusion of dual objects in the pre-monoidal category in a con-
sistent way. All of the diagrams which were outlined for rigidity above apply to pre-
monoidal categories. Thus we can say that a unital pre-monoidal category is rigid if
every object has a dual object and if the dual object functor is an (anti-)equivalence
of categories.

2 Twining
We know how to use quasi-triangular quasi-bialgebras to construct braided
monoidal categories [2]. However we need to use a slight different method to
build a pre-monoidal category. We shall use the work of [3] to show how to con-
struct such a category.

If we define A as a quasi-triangular quasi-bialgebra by the pentuple (A, ∆, ε, Φ̃, R̃)
with a Casimir invariant K and a fixed but arbitary γ ∈ C. The following relations
also hold;

R̃ = γK⊗KR = R · γK⊗K

Φ̃ = Φ · γκ (5)

such that κ = K ⊗ (I ⊗K + K ⊗ I − ∆(K)). Furthermore we should also note that
the action of Φ̃ is slightly different to that of Φ as shown in equation (2) of [3]. Thus
the following must hold;

(id⊗∆)∆(a)Φ̃−1(∆⊗ id)∆(a)Φ̃ ∀a ∈ A

R̃∆(a) = ∆T (a)R̃
(∆⊗ id)R̃ = Φ̃312R̃13Φ̃132R̃23Φ̃

−1
123

(id⊗∆)R̃ = Φ̃−1
213R̃13Φ̃

−1
213R̃12Φ̃123(γ

2K)−1
123

(6)

Isaac et.al. [3] goes on to define

ξ = (∆⊗ id⊗ id)Φ̃−1(Φ̃⊗ I) · (id⊗∆⊗ id)Φ̃ · (I ⊗ φ̃) · (id⊗ id⊗∆)Φ̃−1 (7)

and notes that the quasi-Yang-Baxter equation is satisfied. These relations show
that the catgeory of A-modules with

aU,V,W = (πU ⊗ πV ⊗ πW )Φ̃, (8)

such that modK(A) is a premonoidal category as Φ̃ fails the pentagon condition.
Thus the representation

qU,V,W,Z = (πU ⊗ πV ⊗ πZ)ξ (9)

does not act as the identity. However, R̃ cannot be used to construct a braided,
pre-monoidal category of A-modules, due to the term γ2κ in (5) which violates the
hexagon condition (i) of Definition 2. On the other hand, it may well be possible that
for suitably chosen γ there is a subcategory of modK(A) for which γ2κ = 1 when
restricted to this subcategory. In this case, such a subcategory may acquire the
structure of a rigid, braided, pre-monoidal category. Below we demonstrate that this
is indeed possible when A is the universal enveloping algebra U(g) of a simple Lie
algebra g. Moreover, we will see that the subcategory is the full category modK(A)
containing all the finite-dimensional irreducible U(g)-modules. The universal en-
veloping algebra U(g) of a Lie algebra g acquires the structure of a quasi-bialgebra
with the mappings

ε(I) = 1, ε(x) = 0, ∀x ∈ g

S(I) = I, S(x) = −x, ∀x ∈ g

∆(I) = I ⊗ I, ∆(x) = I ⊗ x + x⊗ I, ∀x ∈ g

(10)

which are extended to all of U(g) such that ε and ∆ are algebra homomorphisms
and S is an anti-automorphism. It is easily checked that ∆ is co-associative; i.e.
(id⊗∆)∆(x) = (∆⊗ id)∆(x) ∀x ∈ U(g). This means that we can take Φ = I ⊗ I ⊗ I
for the co-associator of U(g) and α = β = I. We must also set ε(K) = 0 and assume
that S(K) = −K. In this work we shall adopt the summation convention over all
repeated indicies such that

Φ = Xj ⊗ YJ ⊗ Zj

Φ−1 = X̄j ⊗ ȲJ ⊗ Z̄j

R =
∑

i

ai ⊗ bi

(11)

The u operator is the next major calculation which needs to be shown here. By prov-
ing that the u operator is unique and non-trivial we can apply Altschuler’s [1] theory
that for any finite dimensional representation of A the double dual is equivalent to
the original representation. Thus the left and right duals are equivalent, which leads
to the examination the observable states of confinement. We shall now calculate
the u operator:

X̄jS(Ȳj)Z̄j = (−1)−K(K−K−ε(K))

= I.
(12)

S(Xj)YjS(Zj) = (−1)−K(K−K−ε(K))

= I.
(13)

S(bl)al = (−1)−K2
. (14)

u = S(YjS(Zj))S(bl)alXj

= S(YjS(Zj))XjS(bl)al

= S(YjS(Zj))Xj(−1)−K2
.

= (−1)−K2

(15)

3 Hermitian Structures
In this investigation we must explore the notion of a hermitian category. We owe
all the definitions and properties used here to Turaev [8] and Kirillov [7]. We shall
continue to assume that the ground field used here is C.

We shall use a ribbon category V which is defined over C with an involution map-
ping f̄ : V → U such that f : U → V , via complex conjugation. Furthermore the
involution morphism, is such that the following identities hold:

¯̄f = f, f ⊗ g, f̄ ⊗ ḡ, f ◦ g = ḡ ◦ f̄ , (16)

such that f and g are arbitrary morphism in and f ◦ g is an arbitrary compossible
morphism both of which are in V. For any Ob(U) ∈ V we get the following trail of
identities:

¯idU = ¯idUidU = ¯idU
¯̄idU = ¯idUidU = ¯̄idU = idU (17)

The hermitian ribbon category is endowed with ¯σU,V = σ−1
U,V for any object U of V we

get,

c̄U = (cU)−1

ēvU = coevUσU,U∗(cU ⊗ idU∗) : U ∗ ⊗ U ∗∗ → 1

¯coevU = (idU∗ ⊗ c−1
U )σ−1

U∗,UevU : 1 → U ∗ ⊗ U ∗∗
(18)

So if V is a hermitian monoidal category we can easily see that from a geometric
interpretation of the bar conjugtion we can get the following identites from Kirillov
[7], which show that ¯dim U = dim U

s̄ij = sij∗

c̄i = c−1
i .

(19)

Our work will move on to describing how to:

• Give a correct description for a hermitian structure [8] over a symmetric, pre-
monoidal category of representations for any Lie group.

• Show association of hermitian structure with the notion of observability of the
states of the system.

• Explore notion that the space of confined states, cannot be consistently endowed
with an sesquilinear form invariant with respect to the Lie group action, needed
to define a hermitian structure over the category of representations.

• Define, for an arbitrary Lie group G and associated symmetric, pre-monoidal cat-
egory of representations prescribed by a Casimir element K, the algebra of ob-
servables A(G, K).

• In general, A(G, K) will be a non-linear generalisation of a Lie superalgebra along
the lines recently proposed in [4].

• The definition for A(G, K) in the present context will be required to account for the
non-associativity. As such, new classes of algebraic structures will be uncovered.
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