
Lectures in Abelian Varieties
Lecture 2

Homomorphisms
by

Liam Wagner

1 Homomorphisms

We shall now describe the two types of holomorphic maps between complex tori which are
translations and homomorphisms. We shall see that every holomorphic mapping is composed
of one of each.

So if we consider two tori such that X = V/Λ and X ′ = V ′/Λ′ with dimensions g and
g’ respectively. The homomorphism of h : X → X ′ is a holomorphic map, compatible with
the group structures. Furthermore the translation by an element x0 ∈ X is defined to be
the holomorphic map such that tx0 : X → X, x 7→ x+ x0.

Proposition 1.1. Let h : X → X ′ be a holomorphic function map.

1. There is a unique homomorpism h : X → X ′ such that h = th(0)f , i.e. h(x) =
f(x) + h(0) for all x ∈ X

2. There is a unique C-linear map F : V → V ′ with F (Λ) ⊂ Λ′ inducing the homomor-
phism f.

Proof Define f = t−h(0)h. We can lift the composed map π : V → X and f : X → X ′

to a holomorphic map F into the universal covering V’ of X’, such that

F :V → V ′

fπ :V → X ′

π′ :V ′ → X ′
(1.1)

in such a way that F (0) = 0. The diagram implies that for all λ ∈ Λ and v ∈ V we have
F (v + λ) − F (v) ∈ Λ′. Thus the continous map v 7→ F (v + λ) − F (v) is constant and we
get F (v + λ) = F (v) + F (λ) for all λ ∈ Λ and v ∈ V . Hence the partial derivatives of F are
2g-fold periodic and thus constant by Liouville’s theorem. It follows that F is C−linear and
f is a homomorphism. The uniqueness of F and f is obvious.

If we consider the set of homomorhpisms under the addition mapping of X into X’, then
we can form an abelian group which is denoted as Hom(X,X ′). We should know that the
holomorphic map from above gives us an injective homomorphism of abelian group

ρa : Hom(X,X ′)→ HomC(V, V ′), f 7→ F (1.2)

By achknowledgeing the restriction for FΛ on F with respect to the lattice Λ as being Z−linear
we can see that FΛ determines F and f completely. Therefore we can construct the injective
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homomorphism such that

ρr : Hom(X,X ′)→ HomC(V, V ′), f 7→ FΛ (1.3)

This rational representation ofHom(X,X ′), with the extension of ρa and ρr toHomQ(X,X ′) =
Hom(X,X ′) ⊗Z Q by the same expression. Furhermore we should refer to these morphism
as being analytic and rational representations. As any subgroup pf HomZ(Λ,Λ′) ∼= Z

4gg′ is
isomorphic to Zm, with injectivity being implied by ρr.

Proposition 1.2. Hom(X,X ′) ∼= Z
m for some m ≤ 4gg′.

If we look further and describe another injective homomorphism such that X” = V ”/Λ”
is another complex torus and f ∈ Hom(X,X ′) and f ′ ∈ Hom(X ′, X”), therefore we get

ρa(f
′f) = ρa(f

′)ρa(f) (1.4)

(the natural distribution map).

Thus from the previous proposition we can use the uniqueness of F and f. Furthermore
if X = X ′, ρa and ρr are representations of the endomorphism ring, End(X) and EndQ :=
End(X) ⊗Z Q. If we consider the two period matrices such that Π ∈ M(g × −2g,C) and
Pi′ ∈ M(g′ × 2g′,C for X and X’ with respect to V,Λ and V ′,Λ′. Clearly then f : X → X ′

is a homomorphism. Now the choosen bases of ρa(f) and ρr(f) for A ∈ M(g′ × g,C) and
R ∈M(2g′ × g,Z) respectively.

The Matrix condition ρa(f)(Λ) ⊂ Λ′ such that

AΠ = Π′R (1.5)

Any 2 matrices A and R (as defined before) that satisy 1.5 define the homomorphism X →
X ′. Therefore ρa and ρr are related. This brings us to the following proposition.

Proposition 1.3. The extended ratioanl representation

ρr ⊗ 1 : EndQ(X)⊗ C→ EndC(Λ⊗ C) = EndC(V × V ) (1.6)

is equivalent to the direct sum of the analytic representation and its complex conjugate:
ρr ⊗ 1 ∼= ρa ⊕ ρa

We shall not prove this statement as the description above outlines the details needed.
As a natural conseqence we will now examine the image and kernal of the homomorphism
f : X → X ′ of the complex tori.

Proposition 1.4. 1. imf is a subtorus of X’

2. kerf is a closed subgroup of X. The connected component (kerf)0 of kerf containing
0 is a subtorus of X of finite index in kerf .
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This appears as the conseqence of lemma 1.1 from the previous lecture. Thus the com-
mutator complex lie group X of dim g is a complex torus. Having said this we should work
through an example of this statement to demonstarte our assumption of the proof. So X×X ′
of complex tori is the complex torus X×X ′ = V ×V ′/Λ×Λ′. The projection of X×X ′ onto
its factors and natural embedding with respect to X × X ′ is a homomorphism of complex
tori. The same can also be said for X’ with respect to X ×X ′ is aslso a homomorphism of
complex tori. Furthermore the the analytic representation of X is just the projections natu-
ral embeddings of the corrosponding vector space. This leads us to the further statement for
X’ such that the rational representation of this homomorphism is a projection and natural
embedding of the lattice Λ.

1.1 Isogenies

We now need to define a specfic class of homomorphism of complex tori. This is simply the
surjection homomorphism X → X ′ with a finite kernel. A homomorphism is an isogeny if
and only if is is a surjection mapping with dim X = dim X ′. So if Γ ⊆ X is a finite subgroup
then X/Γ defines a complex torus with the natural projection

p : X → X/Γ (1.7)

is therefore an isogeny. We should also be able to see the fact that π−1(Γ) ⊂ V is a lattice
containing Λ and X/Γ = V/π−1(Γ) and thus up to the isomorphism every isogeny is of
this form. By the above proposition 1.4 we can see that every surjective homomorphism
f : X → X ′ of complex tori which factors into a canonical form with respect to a surjective
homomorphism g. Having a complex kernel and an isogeny h we are faced with the Stein
factorization of f,

f :X → X ′

g :X → X/(kerf)0

n :X/(kerf)0 → X ′
(1.8)

The degree (deg f) of a homomorphism f : X → X ′ to be ord(ker f) if it is finite and 0
otherwise. Thus for any isogeny we get

deg f = (Λ′ : deg%r(f)(Λ)) (1.9)

and its index is %r(f)(Λ) in Λ′. If f is the endomorphism End(X) and Λ = Λ′ ∴ det f =
det %r(f). Further more we should note that det%r(f)is positive by proposition 1.3 and
the above statement is vaild for an arbitrary endomorphism as both sides are zero if f is
not an isogeny. Therefore if we take f as being surjective and g : X ′ → X” is the 2nd
homomorphism. Then we have for the degree for the composition deg gf = deg f · deg g.
thus if f and g are isogenies, then the composition of gf is therefore by definition an isogeny.
For any integer n we define the homomorphism nX : X → X by x 7→ nx. If n 6= 0, its kernel
Xn is called the group of n-division points of X.

Proposition 1.5. Xn
∼= (Z/nZ)2g
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Proof ker nX = 1
n
Λ/Λ ∼= Λ/nΛ ∼= (Z/nZ)2g

This statement implies that for any n 6= 0 that the homomorphism nX is an isogeny of
degree n2g. Furthermore any complex torus is a divisble group and Hom(X,X ′) is a tor-
sion free as an abelian group. Thus hom(X,X ′) should be considered as the subgroup of
HomQ(X,X ′) by

deg(rf) := r2gdeg f (1.10)

for any r ∈ Q and f ∈ Hom(X,X ′). We will see that isogenies are almost but not quite a
isomorphism. We define the exponent e = e(f) of an isogeny f to be the exponent of the
finite group ker f . In other words e(f) is the smallest positive integer n with nx = 0 for all
x in ker f .

Proposition 1.6. For any isogeny f : X → X ′ of exponent e there exists an isogeny g :
X ′ → X, unique up to isomorphisms, such that gf = eX and fg = eX′

Proof: As Ker f ⊆ ker eX , there is a map g : X ′ → X such that gf = eX With eX
and f also g is an isogeny. The kernel of g is continued in the kernel of eX′ , since for every
x′ ∈ ker g there is an x ∈ kereX with f(x) = x′ and ex′ = ef(x) = f(ex) = 0. Thus
eX′ = f ′g for some isogeny f ′ : X → X ′ and we get f ′eX = f ′gf = eX′f = feX . This
implies f = f ′, since eX is surjective.

Corollary 1.7. 1. Isogenies define an equivalence relation on the set of complex tori.

2. An element in End(X) is an isogeny if and only if it is invertible in EndQ(X)

Therefore we can clearly call two complex tori isogenous, if there is an isogeny between
them.
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