Lectures in Abelian Varieties Lecture 0 Background by Liam Wagner

In this brief lecture we will simply give a short outline of the fundamental definitions and background required to undertake a tour of abelian varieties. Here we shall just review a few things from third year algebra and complex analysis to refresh our working knowledge.

Definition 0.1. Holomorphic Function If the derivative f'(z) exists at all points z of a region \mathcal{R} , then f(z) is said to be analytic in \mathcal{R} and is referred to as an analytic function in \mathcal{R} or a function in \mathcal{R} or a function analytic in \mathcal{R} . The terms regular and Holomorphic are often used in algebra texts.

Furthermore a function f(z) is said to be analytic at a point z_0 if there exists a neighbourhood $|z - z_0| < \delta$ at all points of which f'(z) exists.

Definition 0.2. Meromorphic Functions A function which is analytic everywhere in the finite plane except at a finite number of poles is called a meromorphic function.

Definition 0.3. A Semi-Lattice is a semi-group $\langle A, \wedge \rangle$ with properties

$$a \wedge b = b \wedge a$$

and
$$a \wedge a = a$$

$$\forall a, b \in A$$

(0.1)

A typical example of a semilattice is formed by taking A to be a collection of all subsets of an arbitrary set with the operation being intersection.

Definition 0.4. Lattices A lattice is an algebra, $\langle A, \wedge, \vee \rangle$ such that both $\langle A, \wedge \rangle$ and $\langle A, \vee \rangle$ are semi-lattices and the following two equalities hold:

$$a \lor (a \land b) = a$$

and
$$a \land (a \lor b) = a.$$

$$\forall a, b \in A$$

(0.2)

An example of a lattice is based upon A being the collection of all equivalence relations on an arbitrary set, \land which is the intersection operation and \lor to be transitive closure of the union of two equivalence relations.

We should also know the fact that a lattice in a complex vector space \mathbb{C}^g is by definition a discrete subgroup of maximal rank in \mathbb{C}^g which is also a free abelian group of rank 2g. As we will see later this is of great significance in terms of the complex torus the variety is mapped over.

Corollary 0.5. Let X be a complex manifold and suppose G is a group acting freely and properly discontinuously on X. Thus X/G is also a complex manifold.

Definition 0.6. Lie Group Let G be a smooth manifold which is also a topological group with multiplication map mult : $G \times G \rightarrow G$ and the inverse map inv : $G \rightarrow G$ and view $G \times G$ as the product manifold. Then G is a Lie Group if mult and inv, are smooth maps.

Definition 0.7. Lie Algebra An algebra L equipped with a multiplication $map[,]: L \otimes L \rightarrow L$ is called a Lie Algebra if $\forall a, b, c \in L$

- 1. $[,] \circ T = -[,]; i.e. [a, b] = -[b, a] (anti-symmetry)$
- 2. [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0 (Jacobi identity)

Notes:

- 1. Lie Algebras are non-associative
- 2. Due to (1), all ideals in a Lie Algebra L are two sided.
- 3. [L, L] is always an ideal of L. If [L, L] = (0), we call L an abelian Lie Algebra.

Definition 0.8. Group Variety A group variety consists of a variety Y together with a homomorphism $\mu : Y \times Y \to Y$, such that the ste of points within Y have a binary operation μ which obey the normal group axoims.

0.1 Cohomology in Algebraic Geometry

For any scheme X and any sheaf \mathcal{F} of \mathcal{O}_X -modules we want to define the groups $H^i(X, \mathcal{F})$. We can define by simply constructing $H^i(X, \mathcal{F})$ by firstly regarding X as a topological space (for our purposes this is the complex torus $X = V/\Lambda$) and \mathcal{F} as a sheaf of abelian groups. Letting Ab(X) be the category of sheaves of abelian groups on X. We let $\Gamma = \Gamma(X, \cdot)$ be the global section functor from Ab(X) in Ab, where Ab is the category of abelian groups. Recall that Γ is left exact so if

$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0 \tag{0.3}$$

is an exact sequence in Ab(X) then the following sequence is exact

$$0 \to \Gamma(\mathcal{F}') \to \Gamma(\mathcal{F}) \to (\mathcal{F}") \tag{0.4}$$

in Ab.